FEASIBILITY STUDIES
ON
OFFSHORE WIND DEVELOPMENT IN INDIA

Dr. M.V. Ramana Murthy and Dr. M.A. Atmanand
National Institute of Ocean Technology,
Ministry of Earth Sciences,
Chennai.

MNRE Stakeholders consultation meet, 14th August 2013
OUTLINE

- Introduction
- Global Scenario
- Offshore Wind Resource Assessment
- Commercial Viability - India
- Design Philosophy of Substructure
 - Static Analysis
 - Code Checking
 - Free Vibration Analysis
 - Earthquake Analysis
 - Coupled Hydrodynamic and Aerodynamic Analysis
- Conclusion
Why Offshore Wind Energy?
- Wind speeds are stable and high
- Significant Potential in India.
- Most of the potential onshore sites already utilized
- Coastal Areas are best benefitted less transmission Coast
- Low Noise Pollution and Visual Intrusion
E V O L U T I O N O F O F F S H O R E W I N D P R O J E C T S

➢ First Offshore Wind Turbine – Sweden (1990)
 ▪ 220 kW – Single, 250m from the coast @ 7m Water Depth.
 ▪ Supported on Tripod
➢ First Offshore Wind Farm – Denmark (1991)
 ▪ 450 kW – 11 Turbines, 1.5 – 3 km from coast @ 2-6 m Water Depth
 ▪ Gravity Foundation.
➢ Global Installed Capacity - 5.5 GW

Current Status - Europe
➢ Under Construction 14 Farms → 3.3 GW
➢ Planning Phase 7 Projects → 1.2 GW
➢ Future Plans
 ▪ 1.4 GW in 2013
 ▪ 1.9 GW in 2014
 ▪ Total 40 GW by 2020

Source: European Wind Energy Association (EWEA)
Offshore Wind Farm Installations in Europe

- **Nysted (165.2 MW)**
- **HornsRev I (160 MW)**
- **Middelgrunde (40 MW)**

EUROPEAN SCENARIO

- Down Trend
 - High Construction Cost
 - Unexpected failures
 - Extreme wind
 - Extreme waves

- 293 Turbines (1166 MW)
REST OF WORLD

- **China**
 - Largest onshore wind power developer
 - 5 GW by 2015 -- 30 GW by 2020

- **USA**
 - 2nd largest Onshore developer. But, no Offshore Projects till date
 - Approved project – 468 MW at Massachusetts
 - 10 GW by 2020 -- 54 GW by 2030

- **Japan**
 - First offshore wind farm 16 MW - 2004
 - 1 GW by 2020

- **India**
 - Onshore
 - Offshore – Policy being formulated

Installed Capacity - India

- Thermal: 67%
- Hydro: 8%
- Wind: 2%
- Nuclear: 1%
- Bio-mass: 2%
- Solar: 0%
OFFSHORE WIND RESOURCE ASSESSMENT

- Based on Winds derived from satellite data
- Wind Speeds for 10 years (18-07-1999 to 17-11-2009)
- One observation for each day at 10m above sea surface - scaled to 80m
- Data validated using 5 moored buoys (ESSO-NIOT)

Sites Considered

- Gujarat
 1. Jakhau
 2. Navalakhi

- Tamil Nadu
 1. Rameshwaram
 2. Kanyakumari

Monthly climatology's of Wind Power Density at 80 m
Wind Speed Distribution

Inter-annual variation of wind for 10 years

- Scaled to 80m → Power Law
 \[
 \frac{V_{\text{ref}}}{V_x} = \left(\frac{Z_{\text{ref}}}{Z_x}\right)^{0.14}
 \]
 - \(V_{\text{ref}}\) = Velocity at ref. height
 - \(V_x\) = Velocity at Hub height
 - \(Z_{\text{ref}}\) = Reference Height (10 m)
 - \(Z_x\) = Hub Height

CDF of wind speeds at 10m and 80m

Wind speed distribution at 80m
Power Production for Various Turbines

Rameshwaram

Kanyakumari

Jakhau

Power Curve
3.0 MW

Wind Speed (m/s)

Power (kW)

0 5 10 15 20 25

Wind Speed (m/s)

0 1000 2000 3000 4000

Rameshwaram

Kanyakumari

Jakhau

Pie Charts for Various Turbines

Re-Power-R122-3.0MW

Re-Power-R126-5.0MW

Re-Power-R122-3.0MW

Legend:
- Idle
- 0% - 25% MW
- 25% - 50% MW
- 50% - 75% MW
- 75% - 100% MW
- Full Capacity

Percentage of Operation Time:
- Rameshwaram: 63%
- Kanyakumari: 71%
- Jakhau: 45%
Plant Load Factors

Power Curves

![Power Curves Graph]

<table>
<thead>
<tr>
<th>Legend</th>
<th>Capacity (MW)</th>
<th>Dia. (m)</th>
<th>Turbine Properties</th>
<th>Plant Load Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cut in</td>
<td>Rated</td>
</tr>
<tr>
<td>Turbine 1</td>
<td>1.5</td>
<td>82</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Turbine 2</td>
<td>2.1</td>
<td>88</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Turbine 3</td>
<td>2.1</td>
<td>95</td>
<td>3.5</td>
<td>12</td>
</tr>
<tr>
<td>Turbine 4</td>
<td>2.1</td>
<td>97</td>
<td>3.5</td>
<td>12</td>
</tr>
<tr>
<td>Turbine 5</td>
<td>3</td>
<td>122</td>
<td>3</td>
<td>11.5</td>
</tr>
<tr>
<td>Turbine 6</td>
<td>3.4</td>
<td>104</td>
<td>3.5</td>
<td>13.5</td>
</tr>
<tr>
<td>Turbine 7</td>
<td>5</td>
<td>126</td>
<td>3.5</td>
<td>14</td>
</tr>
</tbody>
</table>
Components Effecting Investment Cost

- Capital Cost
 - Super structure
 - Turbine
 - Installation
 - Sub Structure
 - Foundation
 - Installation
 - Electrical Equipment
 - Collection System
 - Integration system (Sub station, Switch gears, Generator and etc…)
 - Transmission (Sub station to Power grid)
 - SCADA/EMS
 - Development and Permits

- Operation and Maintenance
VARIOUS SUBSTRUCTURE CONCEPTS

Share of support structures in different wind farms

Gravity-based < 10 m
Monopile (10 – 30m)

Tripod (20 -50 m)
Jacket (30 -60 m)
Floating Platforms (> 60 m)
Parameters

- **Capital Cost:**
 - Formulae given by Dicorato et al, 2011
 - 25% Equity and 75% from Bank (14% interest)

- **Operation and maintenance:**
 - Formula given by Bernd et al, 2012

- **Electricity unit price in Tamil Nadu:** Rs 2.51 per kWh

- **RECs:** Rs. 1500 per MWh

- **GBI:** Rs.0.50 per kWh with a cap of Rs. 1crore per MW
Commercial Viability

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parameters</th>
<th>Onshore</th>
<th>Offshore</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rameshwaram</td>
<td>Kanyakumari</td>
</tr>
<tr>
<td>1</td>
<td>Capital Cost (Cr.)</td>
<td>6.71</td>
<td>13.79</td>
</tr>
<tr>
<td>2</td>
<td>Insurance (Cr.)</td>
<td>0.17</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>O & M (Cr.)</td>
<td>3.46</td>
<td>13.84</td>
</tr>
<tr>
<td>4</td>
<td>Interest (Cr.)</td>
<td>2.82</td>
<td>9.12</td>
</tr>
<tr>
<td>5</td>
<td>Total Expenses (Cr.)</td>
<td>13.16</td>
<td>37.30</td>
</tr>
<tr>
<td>6</td>
<td>Total income (Cr.)</td>
<td>19.91</td>
<td>47.07</td>
</tr>
<tr>
<td>7</td>
<td>Net Profit (Cr.)</td>
<td>6.75</td>
<td>9.77</td>
</tr>
<tr>
<td>8</td>
<td>Generated Power (kWh in Cr.)</td>
<td>4.20</td>
<td>10.38</td>
</tr>
<tr>
<td>9</td>
<td>IRR (%)</td>
<td>13.82</td>
<td>14.45</td>
</tr>
</tbody>
</table>

Cash Flow - Onshore

![Cash Flow - Onshore](chart-onshore.png)

Cash Flow - Kanyakumari

![Cash Flow - Kanyakumari](chart-kanyakumari.png)
Methodology for Substructure Development

<table>
<thead>
<tr>
<th>External conditions</th>
<th>Loads</th>
<th>Support structure design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Aerodynamic loads</td>
<td>Blade and Tower</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Seismic loads</td>
<td></td>
</tr>
<tr>
<td>Waves & current</td>
<td>Hydrodynamic loads</td>
<td>Substructure</td>
</tr>
<tr>
<td>Soil</td>
<td>Soil structure interaction</td>
<td>Foundation dynamics</td>
</tr>
</tbody>
</table>
OVERVIEW

- Basic Loads
 - Aerodynamic Load on Rotor
 - IEC 61400
 - Wind Loads on Structure
 - IS 875 Part iii
 - Wave Kinematics
 - Stokes 5th order
 - Hydrodynamic
 - Morison Equation
 - Earthquake
 - IS 1893 Part iv

- Load Combination
 - Extreme Wind Load during Cyclone
 - Earthquake during operation of Turbine

- Pile Soil Interaction
 - 3 Orthogonal Nonlinear Springs (API RP 2A WSD)
 - Soil at Palk Strait
LOADS CONSIDERED

Methods for Load Calculation

<table>
<thead>
<tr>
<th>S.No</th>
<th>Method</th>
<th>Benefit</th>
<th>Challenges</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use available standards like IEC, DNV, ABS, GL etc.</td>
<td>Simplified method</td>
<td>Needs more number of assumptions</td>
<td>Simplified method gives approximate loads</td>
</tr>
<tr>
<td>2</td>
<td>Use suitable Tools for loads prediction</td>
<td>More accurate & gives detailed data</td>
<td>Getting the Tool, Learning & execution</td>
<td>Involves more time & Cost</td>
</tr>
<tr>
<td>3</td>
<td>Approach OEM’s for Transfer Functions</td>
<td>More accurate & gives detailed data</td>
<td>Getting from OEM’s</td>
<td>Involves more time & Cost</td>
</tr>
</tbody>
</table>

Properties of Wind Turbine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Diameter (m)</td>
<td>((\text{Power}/310)^{1/2.01})</td>
</tr>
<tr>
<td>Blade Length (m)</td>
<td>((\text{Rotor diameter}) / 2.08)</td>
</tr>
<tr>
<td>Blade Mass (kg)</td>
<td>(2.95 \times (\text{Blade length})^{2.13})</td>
</tr>
<tr>
<td>Design Rotational Speed (rpm)</td>
<td>15</td>
</tr>
<tr>
<td>Max Rotational Speed (rpm)</td>
<td>(1.5 \times \text{Design Speed})</td>
</tr>
<tr>
<td>Distance between CG of blade & Rotor centre</td>
<td>(\frac{1}{2} \times \text{Blade Length})</td>
</tr>
</tbody>
</table>
Wind / Hydrodynamic Load on Tower and Substructure

- **IS 875 Part – 3**
 - Basic Wind Speed (Survival), $V_b = 39$ m/s
 - Basic Wind Speed (Operational), $V_b = 9$ m/s

- **Hydrodynamic Loads**
Parameter	Environment	Normal	Extreme
Wave Height (H_s)	2 m	4 m	
Wave period (T_p)	7 s	12 s	

- **Earthquake Loads**
 - IS 1893 – 2002 (Response Spectrum Method)
 - Zone Factor, $Z = 0.1$ (Zone II)
 - Reduction Factor, $R = 2.0$ (Steel Chimney)
 - Importance Factor , $I = 1.5$ (Steel Chimney)
 - Percentage of damping = 2 %
Pile Soil Interaction

<table>
<thead>
<tr>
<th>Description</th>
<th>Graphic Log</th>
<th>Depth (m)</th>
<th>Scale</th>
<th>SPT (N-Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey fine sand</td>
<td></td>
<td>3.0 m</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 m</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Grey silty fine sand</td>
<td></td>
<td>4.5 m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5 m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Grey silty clay with pieces of calcareou sand</td>
<td></td>
<td>3.0 m</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>crushed of rock and of calcareous sand stone</td>
<td></td>
<td>10.6 m</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Crushed pieces of rock and of calcareous sand</td>
<td></td>
<td>1.5 m</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>stone</td>
<td></td>
<td>12.0 m</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Silty fine sand</td>
<td></td>
<td>1.5 m</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Fine sand with white color small stone</td>
<td></td>
<td>3.0 m</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.6 m</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fino Silty sand</td>
<td></td>
<td>4.5 m</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.0 m</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPT H (m)</th>
<th>Internal Friction Φ^o</th>
<th>Skin Friction (KPa)</th>
<th>Tip Resistance (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>32</td>
<td>1.99</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>3.99</td>
<td>0.22</td>
</tr>
<tr>
<td>4.5</td>
<td>33</td>
<td>4.69</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>7.99</td>
<td>0.43</td>
</tr>
<tr>
<td>7.5</td>
<td>39</td>
<td>9.99</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>9.39</td>
<td>0.39</td>
</tr>
<tr>
<td>10.5</td>
<td>34</td>
<td>10.96</td>
<td>0.45</td>
</tr>
<tr>
<td>12</td>
<td>44</td>
<td>24.19</td>
<td>2.16</td>
</tr>
<tr>
<td>13.5</td>
<td>31</td>
<td>14.09</td>
<td>0.58</td>
</tr>
<tr>
<td>15</td>
<td>41</td>
<td>24.84</td>
<td>2.16</td>
</tr>
<tr>
<td>16.5</td>
<td>41</td>
<td>27.32</td>
<td>2.38</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
<td>29.81</td>
<td>2.59</td>
</tr>
<tr>
<td>19.5</td>
<td>34</td>
<td>25.97</td>
<td>1.40</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>27.97</td>
<td>1.51</td>
</tr>
<tr>
<td>30</td>
<td>34</td>
<td>32.40</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Substructure Concepts

<table>
<thead>
<tr>
<th>Wind Turbine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power, MW</td>
<td>3</td>
</tr>
<tr>
<td>Hub Height, m</td>
<td>80</td>
</tr>
<tr>
<td>Rotor Diameter, m</td>
<td>96</td>
</tr>
<tr>
<td>Tower Diameter, m</td>
<td>4.5</td>
</tr>
<tr>
<td>Tower Thickness, m</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monopile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth, m</td>
<td>10</td>
</tr>
<tr>
<td>Monopile Diameter, m</td>
<td>4.2</td>
</tr>
<tr>
<td>Monopile Thickness, m</td>
<td>0.06</td>
</tr>
<tr>
<td>Monopile Length, m</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jacket</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth, m</td>
<td>30</td>
</tr>
<tr>
<td>No. Jacket Legs</td>
<td>4</td>
</tr>
<tr>
<td>No. of Braces</td>
<td>3</td>
</tr>
<tr>
<td>Slope of Jacket Legs</td>
<td>1 in 10</td>
</tr>
<tr>
<td>Platform level, m</td>
<td>35</td>
</tr>
<tr>
<td>Jacket Leg Diameter, m</td>
<td>1.8</td>
</tr>
<tr>
<td>Jacket Pile Diameter, m</td>
<td>1.6</td>
</tr>
<tr>
<td>Pile and Leg Thickness, m</td>
<td>0.05</td>
</tr>
<tr>
<td>Brace Diameter, m</td>
<td>0.4</td>
</tr>
<tr>
<td>Brace Thickness, m</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Results – Static Analysis

Deflected Profiles

- **Monopile - 0° & 45°**
 - Deflections < Permissible Value
 - 1.25% of Tower height (i.e. 1 m)

- **Jacket- 0°**
 - Length: [m]
 - Min: 0.001
 - Max: 0.90

- **Jacket- 45°**
 - Length: [m]
 - Min: 0.0006
 - Max: 0.704
RESULTS – STATIC ANALYSIS

Code Checking

Monopile - 0° & 45°

Jacket - 0°

Jacket - 45°

Code Checking – API Standards

Utilization Factor < 1.0 (Safe)
Free Vibration Analysis

- Regular wave periods ➞ 6 to 30s.
- Natural Frequencies

<table>
<thead>
<tr>
<th>Mode No</th>
<th>Monopile</th>
<th></th>
<th>Jacket</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency (Hz)</td>
<td>Period (s)</td>
<td>Frequency (Hz)</td>
<td>Period (s)</td>
</tr>
<tr>
<td>1 & 2</td>
<td>0.23</td>
<td>4.19</td>
<td>0.41</td>
<td>2.4</td>
</tr>
<tr>
<td>3 & 4</td>
<td>1.87</td>
<td>0.53</td>
<td>1.51</td>
<td>0.64</td>
</tr>
<tr>
<td>5</td>
<td>5.78</td>
<td>0.17</td>
<td>3.07</td>
<td>0.32</td>
</tr>
</tbody>
</table>

- Safe against resonance - Waves.

Earthquake load Analysis

- Earthquake during Turbine operation
- Response Spectrum Analysis
- The Member utilization factors are less than 1.0.
- Deflection at the top of the nacelle 0.52 m
Dynamic Analysis for Wave and Wind

Forcing Functions

- Time - Hydrodynamics
- Time - Aerodynamics
- Time - Hydrodynamics
- Time - Aerodynamics

Response

- Time - Displacement
- Time - Displacement
- Time - Displacement
- Time - Displacement

Animation
OFFSHORE PLATFORM FOR COLLECTING WIND AND METEOCEAN DATA
DATA COLLECTION PLATFORM

Platform Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Legs</td>
<td>4</td>
</tr>
<tr>
<td>No. of bracings</td>
<td>4</td>
</tr>
<tr>
<td>Platform level</td>
<td>15 m</td>
</tr>
<tr>
<td>Pile Length</td>
<td>10 m</td>
</tr>
<tr>
<td>Water Depth</td>
<td>10 m</td>
</tr>
</tbody>
</table>

Instrumentation

<table>
<thead>
<tr>
<th>Instrumentation</th>
<th>No. of Legs</th>
<th>No. of bracings</th>
<th>Platform level</th>
<th>Pile Length</th>
<th>Water Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Velocity</td>
<td>Lidar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Direction</td>
<td>Lidar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave</td>
<td>Wave Rider Buoy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>ADCP, RCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tide</td>
<td>RTG, ATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH, Salinity & TSS</td>
<td>Water Quality buoy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTALLATION SEQUENCE

Transportation in Barge

Launching using crane Barge

Option – 1: Piling through Jacket legs

Placing Template

Piling driving through template

Jacket on piles

Pile connection

Quick coupling – To connect piles to jacket

Option – 2: Piling through legs with follower
Lidar for Wind Assessment

Working Principle:
- Laser radiation scatters from atmospheric aerosols
- A laser is focused at a point incident with the aerosols
- Aerosols movement follows the wind
- Scattered radiation is ‘Doppler’ shifted by the wind speed
- The ‘in-line’ component of wind speed is measured

Lidar can Provide:
- Wind profiling across heights from 10 m to 200 m (i.e. hub height, tip height measurements and beyond)
- Both vertical and horizontal wind speed components
- Turbulence intensity measurements

Advantages of Lidar:
- Minimized safety risks due to removal of working at height (Mast)
- Rapid installation in hard to reach areas – forested sites, helicopter drop zones
DYNAMIC RESPONSE OF STRUCTURES
DURING CONSTRUCTION AND IN PLACE

Jonswap(Hs)
Significant Wave Height(Hs) :0.5
Peak enhancement Factor :3.3
Peak wave Frequency :10s

Spectral Density (m²/s)
Period (s)

Actual Condition
Simulated Condition

mnre_2.mp4
CONCLUSIONS

- Wind Resource Assessment indicates feasibility of offshore wind farms development in Tamil Nadu (Rameshwaram, Kanyakumari) and Gujarat (Navlakhi, Jakhau).
- Variability of wind potential observed within the states. Kanyakumari with PLF of 0.71 and Rameshwaram of 0.63, whereas Jakhau has low PLF of 0.45 for 3MW Turbine.
- Initial substructure concept analysis indicates Monopile/Gravity substructures are suitable. However, NIOT working on suction bucket foundation also.
- Commercial viability studies indicate IRR of 16.8 at Kanyakumari and 14.5 at Rameshwaram, which needs confirmation after offshore measurements.
- A pilot project can be taken by NIOT with the support of MNRE
- Since, NIOT is working on Ocean Technology, its services can be utilized for offshore wind development in terms of feasibility study, design of substructure / sub sea cables and demonstration of projects.
THANKS FOR KIND ATTENTION